Double Constacyclic Codes Over Two Finite Commutative Chain Rings
نویسندگان
چکیده
Many kinds of codes which possess two cycle structures over special finite commutative chain rings, such as ${\mathbb {Z}}_{2}{\mathbb {Z}}_{4}$ -additive cyclic and quasi-cyclic fractional index etc., were proved asymptotically good. In this paper we extend the study in directions: consider any rings with a surjective homomorphism from one to other, double constacyclic structures. We construct an extensive kind rings. And, developing probabilistic method suitable for fields, prove that are
منابع مشابه
Some constacyclic codes over finite chain rings
For λ an n-th power of a unit in a finite chain ring we prove that λ-constacyclic repeated-root codes over some finite chain rings are equivalent to cyclic codes. This allows us to simplify the structure of some constacylic codes. We also study the α+pβconstacyclic codes of length p over the Galois ring GR(p, r).
متن کاملSkew constacyclic codes over finite chain rings
Skew polynomial rings over finite fields ([7] and [10]) and over Galois rings ([8]) have been used to study codes. In this paper, we extend this concept to finite chain rings. Properties of skew constacyclic codes generated by monic right divisors of x − λ, where λ is a unit element, are exhibited. When λ = 1, the generators of Euclidean and Hermitian dual codes of such codes are determined tog...
متن کاملConstacyclic Codes over Finite Principal Ideal Rings
In this paper, we give an important isomorphism between contacyclic codes and cyclic codes,over finite principal ideal rings.Necessary and sufficient conditions for the existence of non-trivial cyclic self-dual codes over finite principal ideal rings are given.
متن کاملConstructions of self-dual codes over finite commutative chain rings
We study self-dual codes over chain rings. We describe a technique for constructing new self-dual codes from existing codes and we prove that for chain rings containing an element c with c = −1 all self-dual codes can be constructed by this technique. We extend this construction to self-dual codes over principal ideal rings via the Chinese Remainder Theorem. We use torsion codes to describe the...
متن کاملAdditive cyclic codes over finite commutative chain rings
Additive cyclic codes over Galois rings were investigated in [3]. In this paper, we investigate the same problem but over a more general ring family, finite commutative chain rings. When we focus on non-Galois finite commutative chain rings, we observe two different kinds of additivity. One of them is a natural generalization of the study in [3], whereas the other one has some unusual propertie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2023
ISSN: ['0018-9448', '1557-9654']
DOI: https://doi.org/10.1109/tit.2022.3215593